Structure-Property Correlations in the Platinum Oxide and Palladium Sulfide Bronzes with Columnar Chains of Square-Planar TX₄ Units (T = Pt, X = O, T = Pd, X = S)

Marie-Liesse Doublet,[†] Enric Canadell,^{*,†} and Myung-Hwan Whangbo^{*,‡}

Contribution from the Laboratoire de Chimie Théorique, Université de Paris-Sud, 91405 Orsay, France, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204

Received September 10, 1993. Revised Manuscript Received December 9, 1993®

Abstract: We carried out tight-binding electronic band structure calculations for the three representative types of ternary platinum oxides with columnar PtO4 chains, NaPt₃O4, CaPt₂O4, and CdPt₃O6, and for LaPd₃S4, the sulfur analog of NaPt₃O₄. As far as the z^2 bands are concerned, the three orthogonal columnar PtO₄ chains of NaPt₃O₄ are nearly independent, but NaPt₃O₄ does not undergo a metal-to-insulator transition. This implies that the lattice of NaPt₃O₄ is too stiff to accommodate a periodic lattice distortion associated with the partially filled z^2 bands. As far as the $x^2 - y^2$ bands are concerned, however, the three orthogonal columnar TX₄ chains of the MT₃X₄ lattice (T = Pt, X = O; T = Pd, X = S) are not independent. Due to the through-bond σ interactions that occur between the columnar TX₄ chains, the partially-filled $x^2 - y^2$ bands are wide and possess 3D character. This explains why (RE)Pd₃S₄ is metallic. Despite the dimerization in its columnar PtO_4 chains, $CaPt_2O_4$ is metallic because the upper half of the z^2 band overlaps with other d-block bands. The dimerization of the columnar PtO₄ chains does not represent a charge density wave instability but is probably caused by the alternation of filled and unfilled square-prism sites along each chain. The very small band gap of CdPt₃O₆ (0.04 eV) does not represent the energy separation between the z^2 and $x^2 - y^2$ bands but may originate from holes introduced into the z^2 band by nonstoichiometry and counterion disorder.

Introduction

Some ternary platinum oxides¹ contain columnar PtO₄ chains, i.e., columnar stacks of parallel square-planar PtO4 groups. There are three types of ternary platinum oxides with columnar PtO₄ chains. These chains run in three mutually orthogonal directions in the $M_x Pt_3 O_4$ phase,² in two mutually orthogonal directions in the MPt₂O₄ phase,³ and only in one direction in the MPt₃O₆ phase.⁴ To a first approximation, the columnar PtO₄ chains of these oxides can be considered as independent of one another. Whether or not these oxides are metallic is commonly discussed in terms of the mixed-valence classification scheme given by Robin and Day⁵ and the occupancy of the qualitative z^2 band expected for a columnar PtO₄ chain.⁶ In general, one-dimensional (1D) metals are susceptible to a periodic lattice distortion that opens a band gap at the Fermi level, which is often referred to as a Peierls instability or a charge density wave (CDW) instability.⁷ The typical example is a 1D chain with half-filled band, which

 (3) Cahen, D.; Ibers, J. A.; Mueller, M. H. Inorg. Chem. 1974, 13, 110.
 (4) (a) Hriljac, J. A.; Parise, J. B.; Kwei, G. H.; Schwartz, K. B. J. Phys. Chem. Solids 1991, 52, 1273. (b) Prewitt, C. T.; Schwartz, K. B.; Shannon, R. D. Acta Crystallogr. C 1983, 39, 519. (c) Schwartz, K. B.; Parise, J. B.; Prewitt, C. T.; Shannon, R. D. Acta Crystallogr. B 1983, 39, 217. (d) Schwartz, K. B.; Parise, J. B.; Prewitt, C. T. Acta Crystallogr. B 1983, 39, 525. (e)
Schwartz, K. B.; Parise, J. B. J. Phys. Chem. Solids 1982, 43, 911.
(5) Robin, M.; Day, P. Adv. Inorg. Chem. Radiochem. 1967, 10, 247.
(6) For qualitative band structure descriptions of columnar platinum chain

systems, see: (a) Krogmann, K. Angew. Chem., Int. Ed. Engl. 1969, 8, 35. (b) Miller, J. S.; Epstein, A. J. Prog. Inorg. Chem. 1976, 20, 1.

tends to undergo a dimerization thereby opening a band gap at the Fermi level. This provides an explanation for the occurrence of the Pt^{2+}/Pt^{4+} mixed-valence systems⁵ and their nonmetallic properties.^{5,8} Platinum chain systems with partially oxidized platinum ions, $Pt^{(2+\delta)+}$, possess partially empty z^2 bands^{6,9} and hence are typically metals around room temperature.¹⁰

The platinum oxides with the columnar PtO_4 chains exhibit somewhat puzzling structural and physical properties. For example, the platinum oxidation state in $N_aPt_3O_4$ is +2.333, which suggests that its z^2 band (from the viewpoint of the chain with one metal atom per repeat unit) is one-sixth empty and hence the instability toward a hexamerization distortion. However, NaPt₃O₄ shows a uniform Pt-Pt distance and is a metal with high conductivity. Thus, one might speculate if the three mutally orthogonal columnar PtO4 chains interact to some extent to reduce the 1D character. In the $CaPt_2O_4$ phase, the platinum oxidation state is +3, which suggests a half-filled z^2 band and hence a dimerization instability. Indeed, the columnar PtO₄ chains of CaPt₂O are dimerized (with Pt-Pt distances of 2.79 and 2.99 Å), but $CaPt_2O_4$ is not semiconducting but metallic as if the dimerization is not caused by a CDW instability. The MPt₃O₆ phase contains two types of chains, one columnar PtO₄ chain and two edge-sharing octahedral chains per formula unit (see Figure 8 and below for further discussion). With divalent

© 1994 American Chemical Society

[†] Université de Paris-Sud.

[‡]North Carolina State University.

^{*} Abstract published in Advance ACS Abstracts, February 1, 1994. (1) For a review, see: Schwartz, K. B.; Prewitt, C. T. J. Phys. Chem. Solids 1984, 45, 1.

^{(2) (}a) Schwartz, K. B.; Parise, J. B.; Prewitt, C. T.; Shannon, R. D. Acta Crystallogr. B 1982, 38, 2109. (b) Schwartz, K. B.; Prewitt, C. T.; Shannon, R. D.; Corliss, L. M.; Hastings, J. M.; Chamberland, B. L. Acta Crystallogr. B 1982, 38, 363. (c) Shannon, R. D.; Gier, T. E.; Carcia, P. F.; Bierstedt, P. E.; Flippen, R. B.; Vega, A. J. Inorg. Chem. 1982, 21, 3372. (d) Cahen, D.; Ibers, J. A.; Wagner, J. B., Jr. Inorg. Chem. 1974, 13, 1377. (e) Cahen, D.; Ibers, J. A.; Shannon, R. D. Inorg. Chem. 1972, 11, 2311. (f) Waser, J.; McClanahan, E. D., Jr. J. Chem. Phys. 1951, 19, 413.

⁽⁷⁾ For recent reviews, see: (a) Electronic Properties of Inorganic Quasi-One-Dimensional Compounds; Monceau, P., Ed.; Reidel: Dordrecht, The Netherlands, 1985; Parts I and II. (b) Crystal Chemistry and Properties of Materials with Quasi-One-Dimensional Structures; Rouxel, J., Ed.; Reidel: Dordrecht, The Netherlands, 1986. (c) Structure Phase Transitions in Layered Transition Metal Compouls; Motizuki, K., Ed.; Reidel: Dordrecht, The Netherlands, 1986. (d) Low-Dimensional Electronic Properties of Molybdenum Bronzes and Oxides; Schlenker, C., Ed.; Kluwer Academic Publ.: Dordrecht, The Netherlands, 1989. (e) Pouget, J. P. In Semiconductors and Semimetals; Conwell, E., Ed.; Academic Press: New York, 1988; Vol. 27, p 87

⁽⁸⁾ Whangbo, M.-H.; Foshee, M. J. Inorg. Chem. 1981, 20, 113.

⁽⁹⁾ Whangbo, M.-H.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 6093. (10) Williams, J. M.; Schultz, A. J.; Underhill, A. E.; Carneiro, K. In Extended Linear Chain Compounds; Miller, J. S., Ed.; Plenum: New York, 1982; p 73.

cations M2+ and Pt4+ in the octahedral chains, the oxidation state of Pt in the columnar PtO_4 chains of the MPt₃O₆ phase is +2. This suggests a large band gap between the z^2 and $x^2 - y^2$ bands and hence a semiconducting property. Conductivity measurements show that the $CdPt_3O_6$ phase is indeed a semiconductor, but its band gap is very small (i.e., 0.04 eV) compared with the expected energy gap between the $x^2 - y^2$ and z^2 bands of their columnar PtO_4 chains (of the order of 1 eV). Finally we note that the sulfide bronzes (RE)Pd₃S₄ (RE = rare earth) are isostructural with the platinum bronzes MPt₃O₄ and are metallic as well.¹¹ The typical oxidation state of RE³⁺ implies that the z^2 bands of the Pd₃S₄³⁻ lattice are completely filled, and an electron per Pd₃S₄ formula unit is then left over to fill the $x^2 - y^2$ bands of the $Pd_3S_4^{3-}$ lattice. From the viewpoint of columnar PdS_4 chains, the $x^2 - y^2$ orbitals are δ orbitals along the chain direction so that the $x^2 - y^2$ band might be expected to be very narrow. Since electron localization is favorable in a system with a partially filled narrow band system,¹² it is apparently surprising that the sulfide bronzes $(RE)Pd_3S_4$ are observed to be metallic. In order to examine these apparently puzzling observations, we carry out electronic band structure for the representative platinum oxides with the columnar PtO₄ chains as well as the sulfide bronze LaPd₃S₄ by employing the extended Hückel tight binding (EHTB) method.9,13 The atomic orbital parameters employed in our EHTB calculations are listed in Table 1.

d-Block Bands of an Ideal Columnar PtO₄ Chain

To facilitate our discussion of the electronic band structures of the platinum oxides studied in the present work, it is convenient to first consider the d-block bands of an ideal columnar PtO_4 chain 1 constructed with Pt-O = 2.01 Å and Pt-Pt = 2.84 Å.

Figure 1a shows the dispersion relations of the d-block bands of this chain calculated with one PtO₄ unit per repeat unit cell, and Figuer 1b shows the corresponding ones calculated with two PtO₄ units per repeat unit cell. Figure 1 shows that the xz, yz, and xy bands occur in the middle portion of the z^2 band. Along the chain, the z^2 orbitals make σ interactions, the xz/yz orbitals π interactions, and the xy orbitals δ interactions. Consequently, the extent of band dispersion increases in the order xy < xz, yz $< z^2$. (In our discussion of the d-block bands of the platinum oxide bronzes, the $x^2 - y^2$ bands lie above the z^2 bands and are not considered unless stated otherwise.)

Figure 1b shows that when the unit cell size is doubled, each band is doubly folded. Note that the xy band overlaps with the upper half of the folded z^2 band, which plays an important role in determining the physical properties of CaPt₂O₄ (see below). Another important aspect of the band folding concerns an electron counting with band filling. For the columnar PtO₄ chain with Pt^{2.333+} in NaPt₃O₄, for example, the z^2 band is one-sixth empty

Table 1. The Exponents ζ_i and the Valence Shell Ionization Potentials H_{ii} for Slater-Type Atomic Orbitals $\chi_i^{a,b}$

atom	Xı	\$i	\$i'	H_{ii} (eV)
0	2s	2.275		-32.3
0	2p	2.275		-14.8
S	3s	1.817		-20.0
S	3p	1.817		-13.3
Pd	5s	2.19		-9.20
Pd	5p	2.15		-5.30
Pd	4d	5.98 (0.5264)	2.613 (0.6372)	-12.9
La	6s	2.14	• •	-7.67
La	6р	2.08		-5.01
La	5đ	3.78 (0.7766)	1.38 (0.4587)	-8.21
Pt	6s	2.554	. ,	-9.08
Pt	6p	2.554		-5.47
Pt	5đ	6.013 (0.6334)	2.696 (0.5513)	-12.6

^a H_{ii} 's are the diagonal matrix elements $\langle \chi | H^{\text{eff}} | \chi_i \rangle$, where H^{eff} is the effective Hamiltonian. In our calculations of the off-diagonal matrix elements $H_{ij} = (\chi_i | H^{\text{eff}} | \chi_j \rangle$, the weighted formula was used.^{13b b} The 5d orbitals of Pd, La, and Pt are given as a linear combination of two different Slater-type orbitals, and each is followed by the weighting coefficient in parentheses.

Figure 1. Dispersion relations of the d-block bands calculated for an ideal columnar PtO₄ chain 1 (with Pt-O = 2.01 Å and Pt-Pt = 2.84 Å): (a) with one PtO₄ unit per repeat unit cell and (b) with two PtO₄ units per repeat unit cell. $\Gamma = 0$. $Z = \pi/c$ in (a) and $Z = \pi/2c$ in (b), where c is the Pt-Pt repeat distance. A doubly degenerate band is labeled with an asterisk.

in the representation of one metal per repeat unit (e.g., Figure 1a). In the doubled unit cell representation (e.g., Figure 1b), the z^2 band is doubly folded so that the lower half is completely filled and the upper half is one-third empty. This consideration applies to the case of NaPt₃O₄ examined in the next section.

MPt₃O₄ Phase

As a representative example of this phase, we consider NaPt₃O₄, for which the platinum oxidation state is +2.333. As shown in Figure 2, this phase has three mutually orthogonal columnar PtO₄ chains. Each oxygen atom belongs to three orthogonal chains, and each Na⁺ ion is at the center of a square prism of oxygen atoms. Along each chain direction, there occur square prism sites between every two Pt-Pt bonds. However, the Na⁺ ions are found only at every second square-prism site, and this occurs in three orthogonal directions in such a way that all Pt-Pt bonds have identical environments. The unit cell of NaPt₃O₄ has two formula units (NaPt₃O₄)₂, and each columnar PtO₄ chain has two metal atoms per repeat unit. Therefore, the z² band of each chain will be doubly folded as in Figure 1b. In the threedimensional (3D) lattice, there are three mutally orthogonal chain directions. Provided that there are no interactions among the

⁽¹¹⁾ Keszler, D. A.; Ibers, J. A. Inorg. Chem. 1983, 22, 3366.

 ^{(12) (}a) Mott, N. F. Metal-Insulator Transitions; Barnes and Noble: New York, 1977.
 (b) Brandow, B. H. Adv. Phys. 1977, 26, 651.
 (c) Whangbo, M.-H. J. Chem. Phys. 1979, 70, 4963.
 (13) (a) Hoffmann, R. J. Chem. Phys. 1963, 39, 1397.
 (b) Ammeter, J.

^{(13) (}a) Holfmann, R. J. Chem. Phys. 1963, 39, 1397. (b) Ammeter, J. H.; Bürgi, H.-B.; Thibeault, J.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 3686.

Figure 2. Perspective view of the crystal structure of $NaPt_3O_4$, where Pt, Na, and O atoms are represented by small filled, medium hatched, and large open circles, respectively. The Pt–Pt contacts of the columnar PtO₄ chains are shown by dashed lines.

three orthogonal chains, the z^2 band of each chain is dispersive along its own chain direction but flat in other chain directions. Thus, the z^2 band dispersion relations expected for such a 3D lattice along $\Gamma \to X \to M \to R$ (for the definition of Γ, X, M , and R, see the first Brillouin zone 2) are given as sketched in 3, where the bands labeled with an asterisk are doubly degenerate.

The d-block bands calculated for the 3D lattice of NaPt₃O₄ are shown in Figure 3, where the bands labeled with an asterisk are doubly degenerate, and the dashed line refers to the Fermi level. For simplicity only the top portion of the highest occupied bands is shown. The bands at the top portion of Figure 3 are the z^2 bands, which correspond to the upper half of the schematic bands in 3. The bands of the 3D NaPt₃O₄ lattice exhibit characteristics quite similar to those expected for the 3D lattice of three orthogonal, noninteracting chains. This suggests that the three orthogonal chains are nearly independent as far as the z^2 bands are concerned.

Figure 4 shows the Fermi surface calculated for the NaPt₃O₄ lattice as a series of six cross-section views perpendicular to the $\Gamma \rightarrow Z$ direction. From the conceptual viewpoint of the hidden Fermi surface,¹⁴ it is easy to recognize a pair of nearly parallel planes perpendicular to $\Gamma \rightarrow X$ and another pair perpendicular

Figure 3. Dispersion relations of the top portion of the occupied d-block bands calculated for NaPt₃O₄, where the dashed line refers to the Fermi level. $\Gamma = (0, 0, 0), X = (a^*/2, 0, 0), M = (a^*/2, b^*/2, 0), and R = (a^*/2, b^*/2, c^*/2)$. A doubly degenerate band is labeled with an asterisk.

Figure 4. Cross sections, perpendicular to the $\Gamma \rightarrow Z$ direction, of the Fermi surface calculated for NaPt₃O₄ at the c^{\bullet} height of (a) 0, (b) 0.1 c^{\bullet} , (c) 0.2 c^{\bullet} , (d) 0.3 c^{\bullet} , (e) 0.4 c^{\bullet} , and (f) 0.5 c^{\bullet} .

to $\Gamma \rightarrow Y$. These are the 1D Fermi surfaces for the chains running along the *a* and *b* directions, respectively. (The separation between

^{(14) (}a) Whangbo, M.-M.; Canadell, E.; Foury, P.; Pouget, J. P. Science,
1991, 252, 96. (b) Canadell, E.; Whangbo, M.-H. Chem. Rev. 1991, 91, 965.
(c) Whangbo, M.-H; Canadell, E. J. Am. Chem. Soc. 1992, 114, 9587. (d)
Whangbo, M.-H.; Ren, J.; Liang, W.; Canadell, E.; Pouget, J.-P.; Ravy, S.;
Williams, J. M.; Beno, M. A. Inorg. Chem. 1992, 31, 4169.

Figure 5. Perspective view of the crystal structure of $CaPt_2O_4$, where Pt, Ca, and O atoms are represented by small filled, medium hatched, and large open circles, respectively. The Pt-Pt contacts of the columnar PtO₄ chains are shown by dashed lines.

the parallel planes, e.g., $a^*/3$ along $\Gamma \rightarrow X$ and $b^*/3$ along $\Gamma \rightarrow Y$, shows that each z^2 band is one-third empty, which corresponds to the platinum oxidation state Pt^{2,333+}.) Though not shown in Figure 4, there are two more nearly parallel planes perpendicular to $\Gamma \rightarrow Z$ representing the 1D Fermi surface for the chains running along the c direction. Consequently, in terms of the calculated Fermi surfaces as well, we reach the same conclusion that the three orthogonal chains of the NaPt₃O₄ lattice are nearly independent as far as the z^2 bands are concerned.

Thus, the interchain interactions in NaPt₃O₄ are too weak to destroy the 1D character of the Fermi surface and cannot be responsible for the absence of a metal-to-insulator transition in NaPt₃O₄. It is important to note that the presence of the 1D Fermi surface is neither sufficient nor necessary for the observation of periodic lattice distortions in solids. For example, Na₃Cu₄S₄ is a strongly 1D metal¹⁵ but does not show any CDW instability down to ~10 K.¹⁶ Probably, the phonon coupling with the electrons at the Fermi level induces a strong lattice strain.¹⁵ By analogy, one might suggest that the 3D lattice is too stiff to accommodate a periodic lattice distortion associated with the partially filled z² bands. This is consistent with the observation that the electrical conductivity of NaPt₃O₄ is very high, because the latter implies a weak phonon scattering and hence a stiff lattice. This point is discussed further in the next section.

CaPt₂O₄ Phase

Figure 5 shows the crystal structure of $CaPt_2O_4$, in which the columnar PtO₄ chains run in two orthogonal directions, and a metal atom dimerization (Pt-Pt = 2.79, 2.99 Å) is present along each chain direction. As in the case of NaPt₃O₄, along each chain direction of $CaPt_2O_4$, there occur square prism sites between every two Pt-Pt bonds, and the Ca²⁺ ions are found only at every second square-prism site. The latter occurs only in two directions in $CaPt_2O_4$, so that there occur two different Pt-Pt bond environments alternating along the chain direction (even if all the Pt-Pt bonds were identical in length). The platinum oxidation state is +3, so that, had the columnar PtO₄ chain a uniform Pt-Pt-distance, the z^2 band would be half filled. The dimerization will split the half-filled z^2 band into two, thereby leaving the lower subbands completely filled and upper subbands completely empty and predicting an insulating property. Figure 6 shows the d-block bands calculated for a single columnar PtO₄ chain taken

Figure 6. Dispersion relations of the d-block bands calculated for a single columnar PtO₄ chain of CaPt₂O₄, where the dashed line refers to the Fermi level corresponding to the platinum oxidation state of Pt³⁺. $\Gamma = 0$ and $Z = c^*/2$. A doubly degenerate band is labeled with an asterisk.

I

Ζ

Figure 7. Dispersion relations of the top portion of the occupied d-block bands calculated for CaPt₂O₄, where the dashed line refers to the Fermi level. $\Gamma = (0, 0, 0), X = (a^*/2, 0, 0), M = (a^*/2, b^*/2, 0), R = (a^*/2, 0, c^*/2), and S = (a^*/2, b^*/2, c^*/2).$

from CaPt₂O₄. With respect to the case of Figure 1b, each band of Figure 6 is split into two, as expected. Note that the upper z^2 band overlaps with the upper xz, yz bands and with the upper and lower xy bands. Because of this overlap there is no band gap for the columnar PtO₄ chains with Pt³⁺ ions, so that the chain is expected to be metallic even with the dimerization. The same conclusion is reached from the electronic band structure calculations for the 3D lattice of CaPt₂O₄, which is summarized in Figure 7.

The energy gain for a CDW instability occurs only when the upper band raised by the emerging band gap is unfilled. Notice from Figures 6 and 7 that the Fermi level occurs at a position well above the band gap of the split z^2 bands. Consequently, the dimerization of the columnar PtO₄ chains present in CaPt₂O₄ is not driven by a CDW instability. As already discussed in Figure 5, the crystal structure of CaPt₂O₄ possesses two different Pt-Pt bond environments alternating along the chain direction even if all the Pt-Pt bonds were identical in length. Therefore, the Pt-Pt^{...}Pt bond alternation should be a consequence of the crystal packing forces dictated by the two nonequivalent environments along each chain.

In the case of the NaPt₃O₄ system, all the Pt-Pt bond environments are identical so that the crystal packing forces lead to the PtO₄ chains with uniform Pt-Pt bonds. Due to these crystal packing forces, it may be difficult to distort the PtO₄ chains of the NaPt₃O₄ by a CDW mechanism unless the electronic energy gain due to the CDW can overcome the strain presented by the crystal packing forces. In general, the electronic energy gain by

 ⁽¹⁵⁾ Whangbo, M.-M.; Canadell, E. Inorg. Chem. 1990, 29, 1395.
 (16) Peplinski, Z.; Brown, D. B.; Watt, T.; Hatfield, W. E.; Day, P. Inorg. Chem. 1982, 21, 1752.

^{-11.0 -} z²

Figure 8. Perspective view of the crystal structure of $CdPt_3O_6$, where Pt, Cd, and O atoms are represented by small filled, medium hatched, and large open circles, respectively.

Figure 9. Dispersion relations of the top portion of the occupied d-block bands calculated for CdPt₃O₆. $\Gamma = (0, 0, 0), X = (a^*/2, 0, 0), Y = (0, b^*/2, 0), Z = (0, 0, c^*/2).$

a CDW mechanism is strongest for a system with a half-filled band, and it decreases when the band occupancy deviates from the half-filled situation.¹⁷ Simply speaking, the NaPt₃O₄ system has three one-sixth-empty 1D bands (from the viewpoint of one Pt atom per unit cell in a chain), so that the electronic energy gain resulting from the associated CDW instability is not expected to be large. This plus the aforementioned tendency of the packing forces may be the reason why the NaPt₃O₄ system shows no distortion in the PtO₄ chains.

MPt₃O₆ Phase

Figure 8 shows the crystal structure of CdPt₃O₆, which consists of two types of chains. One is the columnar PtO₄ chains running along the c-axis direction. The other is the octahedral PtO₄ chains, made up of PtO₆ octahedra by sharing their edges, running along the c-axis direction. (The edge-sharing octahedral chains share their corners along the a direction to form a layer.) A unit cell contains two columnar PtO₄ chains and two octahedral PtO₄ chains, and each columnar PtO₄ chain has one Pt atom per repeat unit. The platinum oxidation state at the octahedral coordination site is regarded as +4, which provides six electrons just to fill the t₂ levels. With the oxidation state of Cd²⁺, the platinum oxidation state in the columnar PtO₄ chains is +2.

Figure 9 shows the top portion of the occupied bands calculated for $CdPt_3O_6$. The two bands at the top (see the dispersion along

Figure 10. Dispersion relations of the $x^2 - y^2$ bands calculated for LaPd₃S₄, where the dashed line refers to the Fermi level. $\Gamma = (0, 0, 0), X = (a^*/2, 0, 0), M = (a^*/2, b^*/2, 0),$ and $R = (a^*/2, b^*/2, c^*/2)$. A doubly degenerate band is labeled with an asterisk.

 $\Gamma \rightarrow Z$) are the z² bands of the columnar PtO₄ chains, and they overlap strongly with many bands, most of which are associated with the octahedral chains. Although not shown for simplicity in Figure 9, there is a band gap of about 1.2 eV, whereas according to the conductivity measurements, MPt_3O_6 has a very small band gap (i.e., 0.04-0.07 eV). This apparent contradiction can be explained in terms of the nonstoichiometry of chemical composition such as M deficiency that introduces holes in the z^2 band. In fact, neutron powder diffraction studies show that MPt₃O₆ is an approximate formula. Compositions with M = Mn or Co are found to contain vacancies in the square-prism sites and some M²⁺ ions in the octahedral Pt⁴⁺ sites. This nonstoichiometry and counterion disorder lead to partial oxidation of the columnar stacks and enhance the conductivity. However, the nonstoichiometry and counterion disorder also create random potentials in the lattice. Thus, when the concentration of holes is not high, they may become weakly trapped so that their movement is activated. This might explain the small activation energy observed for MPt_3O_6 .

Sulfide Bronze (RE)Pd₃S₄ (RE = Rare Earth)

As already mentioned, the sulfide bronzes $(RE)Pd_3S_4$ are isostructural with the platinum bronzes $MPt_3O_4^{11}$ so that the unit cell of $(RE)Pd_3S_4$ has two formula units, $[(RE)Pd_3S_4]_2$. With the electron counting $(Pd_3S_4^{3-})_2$ per unit cell, there are two electrons to fill the $x^2 - y^2$ bands of the 3D lattice of LaPd₃S₄. The dispersion relations of the $x^2 - y^2$ bands calculated for the 3D lattice of LaPd₃S₄ are presented in Figure 10, where the bands labeled with asterisks are doubly degenerate, and the dashed line refers to the Fermi level. Note that the $x^2 - y^2$ bands are substantially dispersive, in agreement with the observed metallic character of the sulfide bronzes. In addition, the bottom two partially filled $x^2 - y^2$ bands are dispersive in all three directions of the lattice, so that the sulfide bronzes $(RE)Pd_3S_4$ are predicted to be genuine 3D metals. If we adopt the viewpoint that the three columnar PtO₄ chains of MPt₃O₄ are practically independent, it is expected that the $x^2 - y^2$ bands of (RE)Pd₃S₄ are flat because, in each PdS₄ columnar chain, the $x^2 - y^2$ orbitals are δ orbitals along the chain direction (see 4). Though not shown earlier, the $x^2 - y^2$ bands calculated for NaPt₃O₄ are also wide.

We now discuss why the $x^2 - y^2$ bands of the MT₃X₄ (T = Pt, X = O; T = Pd, X = S) systems are dispersive. Each X atom of the MT₃X₄ lattice belongs to three mutually orthogonal squareplanar TX₄ units (Figure 2) so that, as illustrated in 5, the " x^2 $-y^{2^n}$ orbitals in the three mutually orthogonal planes can interact through the T-X-T bridges. The through-bond σ interactions via these metal-ligand-metal bridges can lead to strong interactions. For instance, in the columnar TX₄ chain along the z

⁽¹⁷⁾ Whangbo, M.-H. ref 7b, p 205.

direction (4), the through-space overlap between the squareplanar TX₄ units along the chain is weak because the $x^2 - y^2$ orbitals make δ interactions. However, as illustrated in 6, strong

interactions along the z direction occur via the through-bond σ

interactions of the square-planar TX₄ units of the chains running along the x and y directions. In a similar manner, strong interactions along the x direction (y direction) occur via the irough-bond σ interactions of the square-planar TX₄ units of ie chains running along the y and z directions (the x and z irections). Consequently, the resulting $x^2 - y^2$ bands of the MT₃X₄ lattice have genuine 3D character, namely, they are not a superposition of the 1D bands of the three mutually orthogonal chains as found for the z^2 bands. (Although not shown, this point was confirmed by calculating the Fermi surfaces of the $x^2 - y^2$ bands.) It is not the through-space interactions within each individual PdS₄ columnar chains but the through-bond interactions between the columnar chains that are responsible for the 3D metallic character of the (RE)Pd₃S₄.

Concluding Remarks

Our study shows that the three orthogonal chains of the NaPt₃O₄ lattice are nearly independent, as far as the z^2 bands are concerned. Nevertheless, a metal-to-insulator transition is absent in $NaPt_3O_4$. This implies that the 3D lattice is too stiff to accommodate a periodic lattice distortion associated with the partially filled z^2 bands. However, the three orthogonal TX₄ columnar chains of the MT_3X_4 lattice (T = Pt, X = O; T = Pd, X = S) are not independent, as far as the $x^2 - y^2$ bands are concerned. The $x^2 - y^2$ bands are wide and possess 3D character due to the through-bond σ interactions that occur between the columnar TX₄ chains. The columnar PtO₄ chains of CaPt₂O₄ contain Pt³⁺ ions and exhibit a metal atom dimerization. Nevertheless, $CaPt_2O_4$ is metallic because the upper xz, yz bands and the xy bands overlap with the upper z^2 band. The dimerization of the columnar PtO₄ chains in CaPt₂O₄ cannot be caused by a CDW instability but most likely by the occurrence of Ca²⁺ ions at every second square-prism site along each chain. The electronic band structure of MPt₃O₆ shows a large band gap in contrast to the very small activation energy experimentally observed. Nonstoichiometry and counterion disorder enhance the conductivity because of the partial oxidation of the columnar stacks they induce. However, they also induce random potentials which will trap the holes at low concentration thereby making their movement weakly activated.

Acknowledgment. This work was supported by the U.S. Department of Energy, Office of Basic Sciences, Division of Materials Sciences, under Grant No. DE-FG05-86ER45259, by NATO, under Grant No. CRG 910129, Scientific Affairs Division, and by Centre National de la Recherche Scientifique, France.